Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2305969

RESUMO

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Assuntos
COVID-19 , Infecções por HIV , Gravidez , Animais , Feminino , Humanos , SARS-CoV-2 , Nelfinavir/farmacologia , Macaca mulatta , Estudos Prospectivos , China , Antivirais/farmacologia
2.
Antiviral Res ; 202: 105311, 2022 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1773103

RESUMO

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por HIV , Inibidores da Protease de HIV , Animais , Cricetinae , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Pulmão , Mesocricetus , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , RNA Viral , Ritonavir/uso terapêutico , SARS-CoV-2
4.
IUBMB Life ; 74(1): 93-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1353459

RESUMO

Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1α-mediated transcriptional regulation of stress response genes with anti-inflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NF-kappa B/metabolismo , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , COVID-19/virologia , Caspase 9/metabolismo , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Células Vero
5.
Nat Commun ; 12(1): 3309, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1260940

RESUMO

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Pandemias , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Linhagem Celular , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Mesocricetus , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
6.
J Biomol Struct Dyn ; 40(11): 5053-5059, 2022 07.
Artigo em Inglês | MEDLINE | ID: covidwho-998105

RESUMO

In silico analysis of six phytochemicals, flabelliferin, marmelosin, piperine, ocimin, curcumin and leucoanthocyanin, along with three drug compounds, nelfinavir, remdesivir and hydroxychloroquine, as positive control against drug targets of one SARS-CoV-2 viral protease, COVID-19 main protease (SARS CoV-2 3CLpro/Mpro), two coronavirus proteases, SARS-CoV main peptidase (SARS CoV Mpro), SARS-CoV main proteinase (SARS CoV 3CLpro), and one human cellular transmembrane serine proteinase (TMPRSS2), was carried out. Except leucoanthocyanin all other phytochemicals proved better than all three positive control drugs against SARS-CoV main peptidase, whereas, flabelliferin was found to be the potential inhibitor for SARS-CoV main proteinase out performing all the positive control drugs and phytochemicals. Amongst the compounds studied, the best inhibitor for COVID-19 main protease was nelfinavir followed by flabelliferin and ocimin. Flabelliferin was found to the best promising inhibitor of human cellular transmembrane serine proteinase, followed by nelfinavir, curcumin, piperine and marmelosin. The result on the inhibition of human cellular transmembrane serine proteinase against COVID-19 has a stable therapeutic advantage as mutation may quickly occur on viral drug targets. Hence, all the phytochemicals tested in the present study are the potential inhibitors of the all the four drug targets and can form a part of therapeutics against COVID-19 with further clinical studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Curcumina , Compostos Fitoquímicos , SARS-CoV-2 , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Curcumina/farmacologia , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Nelfinavir/farmacologia , Peptídeo Hidrolases , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
7.
ACS Nano ; 15(1): 857-872, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: covidwho-997793

RESUMO

The infectious SARS-CoV-2 causes COVID-19, which is now a global pandemic. Aiming for effective treatments, we focused on the key drug target, the viral 3C-like (3CL) protease. We modeled a big dataset with 42 SARS-CoV-2 3CL protease-ligand complex structures from ∼98.7% similar SARS-CoV 3CL protease with abundant complex structures. The diverse flexible active site conformations identified in the dataset were clustered into six protease pharmacophore clusters (PPCs). For the PPCs with distinct flexible protease active sites and diverse interaction environments, we identified pharmacophore anchor hotspots. A total of 11 "PPC consensus anchors" (a distinct set observed in each PPC) were observed, of which three "PPC core anchors" EHV2, HV1, and V3 are strongly conserved across PPCs. The six PPC cavities were then applied in virtual screening of 2122 FDA drugs for repurposing, using core anchor-derived "PPC scoring S" to yield seven drug candidates. Experimental testing by SARS-CoV-2 3CL protease inhibition assay and antiviral cytopathic effect assays discovered active hits, Boceprevir and Telaprevir (HCV drugs) and Nelfinavir (HIV drug). Specifically, Boceprevir showed strong protease inhibition with micromolar IC50 of 1.42 µM and an antiviral activity with EC50 of 49.89 µM, whereas Telaprevir showed moderate protease inhibition only with an IC50 of 11.47 µM. Nelfinavir solely showed antiviral activity with a micromolar EC50 value of 3.28 µM. Analysis of binding mechanisms of protease inhibitors revealed the role of PPC core anchors. Our PPCs revealed the flexible protease active site conformations, which successfully enabled drug repurposing.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/química , Reposicionamento de Medicamentos , SARS-CoV-2/enzimologia , Animais , Antivirais/farmacologia , Domínio Catalítico , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Nelfinavir/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Células Vero
8.
Sci Rep ; 10(1): 20927, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-954796

RESUMO

Coronavirus SARS-CoV-2 is a recently discovered single-stranded RNA betacoronavirus, responsible for a severe respiratory disease known as coronavirus disease 2019, which is rapidly spreading. Chinese health authorities, as a response to the lack of an effective therapeutic strategy, started to investigate the use of lopinavir and ritonavir, previously optimized for the treatment and prevention of HIV/AIDS viral infection. Despite the clinical use of these two drugs, no information regarding their possible mechanism of action at the molecular level is still known for SARS-CoV-2. Very recently, the crystallographic structure of the SARS-CoV-2 main protease (Mpro), also known as C30 Endopeptidase, was published. Starting from this essential structural information, in the present work we have exploited supervised molecular dynamics, an emerging computational technique that allows investigating at an atomic level the recognition process of a ligand from its unbound to the final bound state. In this research, we provided molecular insight on the whole recognition pathway of Lopinavir, Ritonavir, and Nelfinavir, three potential C30 Endopeptidase inhibitors, with the last one taken into consideration due to the promising in-vitro activity shown against the structurally related SARS-CoV protease.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Lopinavir/farmacologia , Nelfinavir/farmacologia , Inibidores de Proteases/farmacologia , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Combinação de Medicamentos , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Simulação de Dinâmica Molecular
9.
J Diabetes ; 13(3): 243-252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-933955

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is currently posing significant threats to public health worldwide. It is notable that a substantial proportion of patients with sever COVID-19 have coexisting diabetic conditions, indicating the progression and outcome of COVID-19 may relate to diabetes. However, it is still unclear whether diabetic treatment principles can be used for the treatment of COVID-19. METHODS: We conducted a computational approach to screen all commonly used clinical oral hypoglycemic drugs to identify the potential inhibitors for the main protease (Mpro ) of SARS-CoV-2, which is one of the key drug targets for anti-COVID-19 drug discovery. RESULTS: Six antidiabetic drugs with docking scores higher than 8.0 (cutoff value), including repaglinide, canagliflozin, glipizide, gliquidone, glimepiride, and linagliptin, were predicted as the promising inhibitors of Mpro . Interestingly, repaglinide, one of the six antidiabetic drugs with the highest docking score for Mpro , was similar to a previously predicted active molecule nelfinavir, which is a potential anti-HIV and anti-COVID-19 drug. Moreover, we found repaglinide shared similar docking pose and pharmacophores with a reported ligand (N3 inhibitor) and nelfinavir, demonstrating that repaglinide would interact with Mpro in a similar way. CONCLUSION: These results indicated that these six antidiabetic drugs may have an extra effect on the treatment of COVID-19, although further studies are necessary to confirm these findings.


Assuntos
Tratamento Farmacológico da COVID-19 , Hipoglicemiantes/farmacologia , Proteínas da Matriz Viral/antagonistas & inibidores , Células A549 , Antivirais/farmacologia , Sítios de Ligação , Descoberta de Drogas , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nelfinavir/farmacologia , Inibidores de Proteases/farmacologia
10.
Pharmacol Rep ; 72(6): 1553-1561, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-871625

RESUMO

BACKGROUND: A large body of research has focused on fluoroquinolones. It was shown that this class of synthetic antibiotics could possess antiviral activity as a broad range of anti-infective activities. Based on these findings, we have undertaken in silico molecular docking study to demonstrate, for the first time, the principle for the potential evidence pointing ciprofloxacin and moxifloxacin ability to interact with COVID-19 Main Protease. METHODS: In silico molecular docking and molecular dynamics techniques were applied to assess the potential for ciprofloxacin and moxifloxacin interaction with COVID-19 Main Protease (Mpro). Chloroquine and nelfinavir were used as positive controls. RESULTS: We revealed that the tested antibiotics exert strong capacity for binding to COVID-19 Main Protease (Mpro). According to the results obtained from the GOLD docking program, ciprofloxacin and moxifloxacin bind to the protein active site more strongly than the native ligand. When comparing with positive controls, a detailed analysis of the ligand-protein interactions shows that the tested fluoroquinolones exert a greater number of protein interactions than chloroquine and nelfinavir. Moreover, lower binding energy values obtained from KDEEP program were stated when compared to nelfinavir. CONCLUSIONS: Here, we have demonstrated for the first time that ciprofloxacin and moxifloxacin may interact with COVID-19 Main Protease (Mpro).


Assuntos
Tratamento Farmacológico da COVID-19 , Ciprofloxacina/farmacologia , Proteases 3C de Coronavírus/efeitos dos fármacos , Moxifloxacina/farmacologia , Antivirais/farmacologia , Sítios de Ligação , COVID-19/virologia , Cloroquina/farmacologia , Proteases 3C de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nelfinavir/farmacologia , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
11.
Biomed Res Int ; 2020: 6237160, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-868383

RESUMO

Coronaviruses have been reported previously due to their association with the severe acute respiratory syndrome (SARS). After SARS, these viruses were known to be causing Middle East respiratory syndrome (MERS) and caused 35% evanescence amid victims pursuing remedial care. Nowadays, beta coronaviruses, members of Coronaviridae, family order Nidovirales, have become subjects of great importance due to their latest pandemic originating from Wuhan, China. The virus named as human-SARS-like coronavirus-2 contains four structural as well as sixteen nonstructural proteins encoded by single-stranded ribonucleic acid of positive polarity. As there is no vaccine available to treat the infection caused by these viruses, there is a dire need for taking necessary steps against this virus. Herein, we have targeted two nonstructural proteins of SARS-CoV-2, namely, methyltransferase (nsp16) and helicase (nsp13), respectively, due to their substantial activity in viral pathogenesis. A total of 2035 compounds were analyzed for their pharmacokinetics and pharmacological properties. The screened 108 compounds were docked against both targeted proteins and were compared with previously reported known compounds. Compounds with high binding affinity were analyzed for their reactivity through DFT analysis, and binding was analyzed using molecular dynamics simulations. Through the analyses performed in this study, it is concluded that EryvarinM, Silydianin, Osajin, and Raddeanine can be considered potential inhibitors for MTase, while TomentodiplaconeB, Osajin, Sesquiterpene Glycoside, Rhamnetin, and Silydianin for helicase after these compounds are validated thoroughly using in vitro and in vivo protocols.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Antimetabólitos/química , Antimetabólitos/farmacologia , Antivirais/química , COVID-19/epidemiologia , COVID-19/virologia , China/epidemiologia , Dioxolanos/química , Dioxolanos/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Humanos , Metiltransferases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nelfinavir/química , Nelfinavir/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Conformação Proteica , RNA Helicases/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
12.
Sci Rep ; 10(1): 16986, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: covidwho-851312

RESUMO

We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein-ligand complexes and suggest the possibilities of further drug optimisations.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos/métodos , Inibidores da Protease de HIV/farmacologia , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/metabolismo , Sítios de Ligação/efeitos dos fármacos , Fenômenos Biofísicos , COVID-19 , Domínio Catalítico/efeitos dos fármacos , Biologia Computacional , Proteases 3C de Coronavírus , Darunavir/metabolismo , Darunavir/farmacologia , Inibidores da Protease de HIV/metabolismo , Humanos , Indinavir/metabolismo , Indinavir/farmacologia , Lopinavir/metabolismo , Lopinavir/farmacologia , Simulação de Dinâmica Molecular , Nelfinavir/metabolismo , Nelfinavir/farmacologia , Pandemias , Ritonavir/metabolismo , Ritonavir/farmacologia , SARS-CoV-2 , Saquinavir/metabolismo , Saquinavir/farmacologia
13.
J Med Virol ; 92(10): 2087-2095, 2020 10.
Artigo em Inglês | MEDLINE | ID: covidwho-763177

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is the causative agent of the coronavirus disease-2019 (COVID-19) pandemic. Coronaviruses enter cells via fusion of the viral envelope with the plasma membrane and/or via fusion of the viral envelope with endosomal membranes after virion endocytosis. The spike (S) glycoprotein is a major determinant of virus infectivity. Herein, we show that the transient expression of the SARS CoV-2 S glycoprotein in Vero cells caused extensive cell fusion (formation of syncytia) in comparison to limited cell fusion caused by the SARS S glycoprotein. Both S glycoproteins were detected intracellularly and on transfected Vero cell surfaces. These results are in agreement with published pathology observations of extensive syncytia formation in lung tissues of patients with COVID-19. These results suggest that SARS CoV-2 is able to spread from cell-to-cell much more efficiently than SARS effectively avoiding extracellular neutralizing antibodies. A systematic screening of several drugs including cardiac glycosides and kinase inhibitors and inhibitors of human immunodeficiency virus (HIV) entry revealed that only the FDA-approved HIV protease inhibitor, nelfinavir mesylate (Viracept) drastically inhibited S-n- and S-o-mediated cell fusion with complete inhibition at a 10-µM concentration. In-silico docking experiments suggested the possibility that nelfinavir may bind inside the S trimer structure, proximal to the S2 amino terminus directly inhibiting S-n- and S-o-mediated membrane fusion. Also, it is possible that nelfinavir may act to inhibit S proteolytic processing within cells. These results warrant further investigations of the potential of nelfinavir mesylate to inhibit virus spread at early times after SARS CoV-2 symptoms appear.


Assuntos
Fármacos Anti-HIV/farmacologia , Fusão de Membrana/efeitos dos fármacos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Animais , Fármacos Anti-HIV/química , Sítios de Ligação , Fusão Celular , Chlorocebus aethiops , Células Gigantes/efeitos dos fármacos , Células Gigantes/patologia , Células Gigantes/virologia , Humanos , Simulação de Acoplamento Molecular , Nelfinavir/química , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/efeitos dos fármacos , Vírion/patogenicidade , Vírion/fisiologia , Tratamento Farmacológico da COVID-19
14.
Viruses ; 12(6)2020 06 13.
Artigo em Inglês | MEDLINE | ID: covidwho-602214

RESUMO

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Testes de Neutralização/métodos , Pneumonia Viral/tratamento farmacológico , Amodiaquina/farmacologia , Animais , COVID-19 , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/terapia , Quimioterapia Combinada , Emetina/farmacologia , Células HEK293 , Células HT29 , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Soros Imunes/imunologia , Imunização Passiva/métodos , Indóis , Nelfinavir/farmacologia , Pandemias , Piranos/farmacologia , Pirróis/farmacologia , SARS-CoV-2 , Células Vero , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA